400-0123-925
网站首页
关于本站
产品中心
超微量核酸蛋白分析仪
化学发光成像系统
凝胶成像分析系统
蛋白纯化系统
核酸蛋白检测仪
紫外检测仪
自动低压液相色谱分离层析仪
自动部份收集器
恒流泵蠕动泵
紫外分析仪
切胶仪
电泳仪
旋涡混合器
全自动酶标分析仪,洗板机
样品前处理仪器
荧光增白剂检测仪
光化学反应仪
层析柱
新闻资讯
技术文章
资料下载
企业荣誉
询价留言
联系我们
网站首页
关于我们
产品中心
新闻资讯
技术文章
资料下载
企业荣誉
询价留言
联系我们
当前位置:
首页
> 技术详情
活体生物发光成像系统CCD选择指南
近年来兴起的活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体生物发光技术具有更高的灵敏度,可以方便的应用到肿瘤学、基因表达和**开发等各方面。
从市场分析的角度,xenogen公司首先利用了先进的CCD技术来检测活体动物的生物发光,但是该技术的**部件CCD并不是该公司的**。进入该领域的技术和价格壁垒是CCD的性能与成本,决定活体成像市场格局的将是CCD的性能与成本优势。
在活体成像的应用中,选择正确的CCD是非常重要的。那么选择什么样的CCD合适活体生物发光检测呢?目前有两种CCD用于生物发光的检测:强化CCD(intensified CCD)和背部薄化、背照射冷CCD(back-thinned,back-illuminated,cooled CCD)。根据光学原理,在可见光波段,波长越长越容易穿过组织。由于荧光素酶与底物作用发光的波长在600nm左右(见图1),为了检测到几厘米厚的光源,CCD必须在波长大于600nm波段具有很高的灵敏度和量子效率以及低的噪音。强化光子计数CCD对于生物发光应用来说,是大众化的选择。高捕获成像的强化CCD在很低噪音的情况下可以检测到单个光子。然而这些CCD需要频繁的装备bialkali光阴极,只有很低的量子效率,在450nm波段处的量子效率只有10-15%,在650nm波段降为1%(见图2)。Mulitialkali 和GaAs光阴极在600nm以上有很高的量子效率,但同时又碰到热噪音和冷却的难题。且很难得到大的检测面积。
Roper scientific公司是世界上的高性能CCD研发与生产制造商,为Xenogen、UVP、Leica、Olmpus、Bio-rad等公司高性能CCD。公司研发的背照射冷CCD技术使得活体生物发光和荧光成像技术得以实现,使得科学家有机会直接监控活体生物体内的细胞活动和基因行为。Cryogenic 的制冷技术可以使CCD的温度达到-70度到 -105度,那样的温度可以使背照射冷CCD的暗电流减少到可忽略不计的水平。该CCD的-5erms的电子噪音代表了小的噪音底线,信号强度肯定会大于那样的噪音水平,使该CCD具有很高的信噪比,检测的特异性很强(见图3)。另外,更高的空间解析度是背照射冷CCD的另一优势。新款CCD相机PIXIS代表了Roper scientific公司新的CCD研究成果,在500-700nm波段具有95%以上的量子效率,大大提高了检测的灵敏度,将极大的有利于活体生物发光成像技术的发展(见图4)。
如上所述,由于强化CCD与背照射冷CCD在灵敏度、量子效率及信噪比方面的显著差异,决定了背照射冷CCD是生物发光成像的佳选择。早在生物发光成像技术诞生之初,早就有科学家对两者进行了比较(见图5)。
图5强化CCD与背照射CCD在检测灵敏度方面的效果比较(资料来源:Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression Transgenic Research 10: 423–434, 2001.)
由于**的背照射冷CCD技术的问世,科学家利用此技术进行了大量的研究,才使近年来产生了大量的高水平的应用活体成像技术进行肿瘤学、基因**、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。
上一篇:
化学相溶性表
下一篇:
如何选购二氧化碳培养箱